PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

III B.TECH I SEMESTER END REGULAR EXAMINATIONS, DEC/JAN - 2022/23
 DESIGN AND ANALYSIS OF ALGORITHMS
 (Common to IT,AIDS,AIML Branches)

Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A (5X2=10M).

Q.No.		Questions	Marks	CO	KL
1.	a)	List out various asymptotic notations used for best case, average case and worst case analysis of algorithms	$[2 \mathrm{M}]$	1	L 1
	b)	Write the Huffman Algorithm.	$[2 \mathrm{M}]$	2	L3
	c)	Give the example for 0/1 knapsack problem.	$[2 \mathrm{M}]$	3	L3
	d)	State the principle of Backtracking	$[2 \mathrm{M}]$	4	L1
	e)	Compare NP-hard and NP-completeness	$[2 \mathrm{M}]$	5	L4

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.		Explain Binary search algorithm and analyze its time complexity.	[10M]	1	L4
OR					
3.	a)	Define big oh(O), Big omega (Ω) and big theta (Θ) notations	[3M]	1	L1
	b)	Explain quick sort algorithm and simulate it for the following data 20, 35, $10,16,54,21,25$	[7M]	1	L2
UNIT-II					
4.		What is Minimum cost spanning tree? Explain an algorithm for generating minimum cost spanning tree and list out the Applications of Minimum Cost Spanning tree.	[10M]	2	L2
OR					
5.		Write Huffman code algorithm and derive its complexity.	[10M]	2	L2
UNIT-III					
6.		Explain the Travelling sales man problem with suitable example.	[10M]	3	L2
OR					
7.	a)	Discuss all pairs shortest path problem with an example	[5M]	3	L2
	b)	Compare and contrast greedy method and dynamic programming.	[5M]	3	L4
UNIT-IV					
8.		Write an algorithm for N -queens problem using backtracking.	[10M]	4	L2
OR					
9.		Describe in detail graph coloring using back tracking.	[10M]	4	L2
UNIT-V					
10.	a)	How are P and NP problems related?	[3M]	5	L2
	b)	Explain Knuth-Morris-Pratt algorithm with suitable example	[7M]	5	L2
OR					
11.		Explain about the KMP pattern matching algorithm. Illustrate the operations of KMP pattern matching algorithm with example.	[10M]	5	L2

